

 Questions&AnswersPDF
ForMoreInformation:
https://www.certswarrior.com/

Features:
 90DaysFreeUpdates

 30DaysMoneyBackGuarantee

 InstantDownloadOncePurchased

 24/7OnlineChat Support
 ItsLatestVersion

Linux Foundation
CKA

Certified Kubernetes Administrator (CKA)

Visit us at: https://www.certswarrior.com/exam/cka

https://www.certswarrior.com/�

Latest Version: 6.0

Question: 1

You have a Kubernetes cluster with a Deployment named 'web-app' that runs a web application. You
need to set up a mechanism to automatically scale the deployment based on the CPU utilization of the
pods. The scaling should be triggered when the average CPU utilization across all pods reaches 70%. You
should set the minimum and maximum replicas to 2 and 5 respectively.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Create a Horizontal Pod Autoscaler (HPA):
- Use "kubectl create hpa' command to create an HPA resource.
- Specify the name of the HPA, the Deployment to scale, the target CPU utilization (70%), and the
minimum and maximum replicas.
kubectl create hpa web-app-hpa --min=2 --max=5 --cpu-utilization-percentage=70 --target-
ref=Deployment/web-app
2. Verify the HPA Creation:
- Use 'kubectl get hpa' command to check if the HPA was created successfully. You should see an HPA
named 'web-app-hpa' with the configured settings.
3. Monitor the Scaling Behavior:
- You can use the ‘kubectl get pods -l command to monitor the number of pods running as the CPU
utilization changes.
- When the average CPU utilization across the pods reaches 70%, the HPA will automatically scale up the
Deployment to add more pods.
- Conversely, when the CPU utilization falls below the threshold, the HPA will scale down the
Deployment to reduce the number of pods.
Ensure that the 'metrics-server' is installed in your cluster to enable CPU utilization monitoring.,

Question: 2

You have a Deployment named 'my-app' with 5 replicas running an application container. You need to
implement a rolling update strategy that allows for a maximum of 2 pods to be unavailable at any given
time during the update process. Additionally, you want to ensure that the update process is triggered
automatically whenever a new image is pushed to the Docker Hub repository 'my.org/my-app:latest'.

A. See the solution below with Step by Step Explanation.

Answer: A

Visit us at: https://www.certswarrior.com/exam/cka

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 5.
- Define 'maxUnavailable: 2' and ‘maxSurge: 0' in the 'strategy.rollingUpdate’ section to control the
rolling update process.
- Configure a 'strategy.type' to ‘RollingUpdate' to trigger a rolling update when the deployment is
updated.
- Add a 'spec.template.spec.imagePullPolicy: Always' to ensure that the new image is pulled even if it
exists in the pod's local cache.

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f my-app.yamP
3. Verify the Deployment:
- Check the status of the deployment using 'kubectl get deployments my-app' to confirm the rollout and
updated replica count.
4. Trigger the Automatic Update:
- Push a new image to the 'my.org/my-app:latest' Docker Hub repository.
5. Monitor the Deployment:
- Use 'kubectl get pods -l app=my-app' to monitor the pod updates during the rolling update process.
You will observe that up to 2 pods are terminated at a time, while new pods with the updated image are
created.
6. Check for Successful Update:

Visit us at: https://www.certswarrior.com/exam/cka

- Once the deployment is complete, use 'kubectl describe deployment my-app' to see that the
'updatedReplicas' field matches the 'replicas' field, indicating a successful update.

Question: 3

You are running a Deployment named ‘web-app' with 3 replicas of a web application container. The
container image is hosted in a private registry accessible via a secret named 'my-registry-secret'. You
need to implement a rolling update strategy that allows for a maximum of one pod to be unavailable at
any given time during the update process. Additionally, you need to configure a 'pre-stop' hook for the
container that gracefully shuts down the web application before it is terminated.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 3.
- Define 'maxUnavailable: 1' and 'maxSurge: 0' in the 'strategy.rollingUpdate' section to control the
rolling update process.
- Configure a 'strategy.type' to 'RollingUpdate' to trigger a rolling update when the deployment is
updated.
- Add a Always' to ensure that the new image is pulled
even if it exists in the pod's local cache.
- Add a hook to define a script that gracefully shuts down
the web application before the pod is terminated.

Visit us at: https://www.certswarrior.com/exam/cka

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f web-app.yamP
3. Verify the Deployment:
- Check the status of the deployment using 'kubectl get deployments web-app' to confirm the rollout
and updated replica count.
4. Trigger the Automatic Update:
- Push a new image to the 'my-private-registry/web-app:latest' private registry.
5. Monitor the Deployment:
- Use "kubectl get pods -l app=web-app' to monitor the pod updates during the rolling update process.
You will observe that one pod is terminated at a time, while one new pod with the updated image is
created.
6. Check for Successful Update:
- Once the deployment is complete, use 'kubectl describe deployment web-app' to see that the
'updatedReplicas' field matches the ‘replicas' field, indicating a successful update.

Question: 4

You have a Deployment named 'database-deployment' with 2 replicas of a database container. You want
to implement a rolling update strategy that allows for a maximum of one pod to be unavailable at any
given time. However, you also want to ensure that the database container is restarted automatically
when it encounters a failure or crashes. This restart policy should be applied only to the database
containers within the deployment and not affect any other containers in the same pod.

Visit us at: https://www.certswarrior.com/exam/cka

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 2.
- Define 'maxUnavailable: 1' and ‘maxSurge: 0' in the •strategy.rollingUpdate' section to control the
rolling update process.
- Configure a 'strategy.type' to 'RollingUpdate' to trigger a rolling update when the deployment is
updated.
- Set 'spec.template.spec.containers[0].restartPolicy: Always' to ensure the database container restarts
automatically when it encounters a failure.

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f database-deployment.yaml'
3. Verify the Deployment:

Visit us at: https://www.certswarrior.com/exam/cka

- Check the status of the deployment using ‘kubectl get deployments database-deployment’ to confirm
the rollout and updated replica count.
4. Test the Restart Policy:
- Trigger a failure in the 'database' container within one of the pods. This can be done by sending a
SIGKILL signal to the container or by simulating a crash within the container itself.
- Observe that the 'database' container will be restarted automatically while other containers in the
same pod will remain unaffected.
5. Trigger the Automatic Update:
- Push a new image to the 'my-database-image:latest• registry.
6. Monitor the Deployment:
- Use "kubectl get pods -l app=database' to monitor the pod updates during the rolling update process.
7. Check for Successful Update:
- Once the deployment is complete, use ‘kubectl describe deployment database-deployment' to see that
the
'updatedReplicas' field matches the 'replicas' field, indicating a successful update.

Question: 5

You have a Deployment named 'api-server' with 4 replicas of an API server container. You need to
implement a rolling update strategy that allows for a maximum of 2 pods to be unavailable at any given
time. You also want to ensure that the update process is triggered automatically whenever a new image
is pushed to the Docker Hub repository "my.org/api-server:latest'. Furthermore, you want to ensure
that the update process is completed within a specified timeout of 5 minutes. If the update fails to
complete within the timeout, the deployment should revert to the previous version.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 4.
- Define 'maxUnavailable: 2' and •maxSurge: in the 'strategy.rollingUpdate' section to control the rolling
update process.
- Configure a 'strategy.type' to to trigger a rolling update when the deployment is updated.
- Set 'spec.template.spec.containers[0].imagePullPolicy: Always' to ensure that the new image is pulled
even if it exists in the pod's local cache.
- Add a 'spec.progressDeadlineSeconds: 300' to set a timeout of 5 minutes for the update process.

Visit us at: https://www.certswarrior.com/exam/cka

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f api-server.yaml'
3. Verify the Deployment:
- Check the status of the deployment using "kubectl get deployments api-server' to confirm the rollout
and updated replica count.
4. Trigger the Automatic Update:
- Push a new image to the 'my.org/api-server:latest' Docker Hub repository.
5. Monitor the Deployment:
- Use Vxubectl get pods -l app=api-server' to monitor the pod updates during the rolling update process.
6. Observe Rollback if Timeout Exceeds:
- If the update process takes longer than 5 minutes to complete, the deployment will be rolled back to
the previous version. This can be observed using 'kubectl describe deployment api-server’ and checking
the 'updatedReplicas' and 'availableReplicas' fields.

Question: 6

You have a Deployment named 'worker-deployment' with 10 replicas of a worker container. You need to
implement a rolling update strategy that allows for a maximum of 3 pods to be unavailable at any given
time during the update process. You also want to ensure that the update process is completed within a
specified timeout of 10 minutes. If the update fails to complete within the timeout, the deployment

Visit us at: https://www.certswarrior.com/exam/cka

should revert to the previous version. Additionally, you want to implement a pause functionality to
temporarily halt the rolling update process.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 10.
- Define 'maxUnavailable: 3' and 'maxSurge: 0' in the 'strategy.rollingUpdate' section to control the
rolling update process.
- Configure a 'strategy.type' to 'RollingUpdate' to trigger a rolling update when the deployment is
updated.
- Set Always' to ensure that the new image is pulled even if it exists in the pod's local cache.
- Add a 'spec.progressDeadlineSeconds: 600' to set a timeout of 10 minutes for the update process.

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f worker-deployment.yaml'

Visit us at: https://www.certswarrior.com/exam/cka

3. Verify the Deployment:
- Check the status of the deployment using 'kubectl get deployments worker-deployment' to confirm the
rollout and updated replica count.
4. Trigger the Automatic Update:
- Push a new image to the 'my.org/worker:latest' Docker Hub repository.
5. Monitor the Deployment:
- Use "kubectl get pods -l app=worker' to monitor the pod updates during the rolling update process.
6. Pause the Rolling Update:
- To pause the rolling update process, use the following command:
bash
kubectl rollout pause deployment worker-deployment
7. Resume the Rolling Update:
- To resume the rolling update process, use the following command:
bash
kubectl rollout resume deployment worker-deployment
8. Observe Rollback if Timeout Exceeds:
- If the update process takes longer than 10 minutes to complete, the deployment will be rolled back to
the previous version. This can be observed using ‘kubectl describe deployment worker-deployment' and
checking the 'updatedReplicas' and 'availableReplicas" fields.

Question: 7

You have a Deployment named 'frontend-deployment' with 5 replicas of a frontend container. You need
to implement a rolling update strategy that allows for a maximum of 2 pods to be unavailable at any
given time. You also want to ensure that the update process is completed within a specified timeout of 8
minutes. If the update fails to complete within the timeout, the deployment should revert to the
previous version. Additionally, you want to configure a 'post-start' hook for the frontend container that
executes a health check script to verify the application's readiness before it starts accepting traffic.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the Deployment YAML:
- Update the 'replicas' to 5.
- Define 'maxUnavailable: 2' and 'maxSurge: 0' in the 'strategy.rollingUpdate' section to control the
rolling update process.
- Configure a 'strategy.type' to 'RollingUpdate' to trigger a rolling update when the deployment is
updated.
- Set Always' to ensure that the new image is pulled even if
it exists in the pod's local cache.
- Add a 'spec.progressDeadlineSeconds: 480' to set a timeout of 8 minutes for the update process.
- Add a 'spec.template.spec.containers[0].lifecycle.postStart' hook to define a script that executes a
health check script before the container starts accepting traffic.

Visit us at: https://www.certswarrior.com/exam/cka

2. Create the Deployment:
- Apply the updated YAML file using 'kubectl apply -f frontend-deployment.yaml'
3. Verify the Deployment:
- Check the status of the deployment using 'kubectl get deployments frontend-deployment' to confirm
the rollout and updated replica count.
4. Trigger the Automatic Update:
- Push a new image to the 'my.org/frontend:latest' Docker Hub repository.
5. Monitor the Deployment:
- Use 'kubectl get pods -l app=frontend' to monitor the pod updates during the rolling update process.
6. Observe Rollback if Timeout Exceeds:
- If the update process takes longer than 8 minutes to complete, the deployment will be rolled back to
the previous version. This can be observed using 'kubectl describe deployment frontend-deployment'
and checking the 'updatedReplicas' and 'availableReplicas' fields.,

Question: 8

Visit us at: https://www.certswarrior.com/exam/cka

You have a Deployment named 'web-app' running a web application with two pods. The web application
is configured to access a database with the connection string stored in a ConfigMap named 'db- config'.
You need to update the database connection string in the ConfigMap without restarting the pods.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Update the ConfigMap:
- Modify the 'db-config' ConfigMap to include the new connection string. This can be done using 'kubectl
patch' or 'kubectl edit' commands. For instance, using 'kubectl patch':
kubectl patch configmap db-config -p '{"data": {"db-connection-string": "new-connection-string"}}'
2. Verify the Updated ConfigMap:
- Confirm the changes were applied to the ConfigMap by checking its data with 'kubectl get configmap
db- config -o yaml':
kubectl get configmap db-config -o yaml
This should show the updated 'db-connection-string' value.
3. Observe the Pods:
- Monitor the pods in the 'web-app' Deployment. Since ConfigMaps are mounted as volumes, the
updated connection string will automatically be available to the pods without any manual restarts. You
can check the pods using get pods -l app=web-app'.
kubectl get pods -l app=web-app
4. Confirm Application Functionality:
- Verify that the web application is now using the updated database connection by performing relevant
actions within the application, such as querying data or performing other operations.

Question: 9

You have a Deployment named 'mysql-deployment' running a MySQL database server. You need to
store the MySQL root password securely using a Secret. This password should be used by the database
server when it starts.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1. Create the Secret:
- Create a Secret named 'mysql-password’ to store the root password.
- Use the 'kubectl create secret generic' command with the '--from-literal' flag to create a generic Secret
with a key-value pair:

Visit us at: https://www.certswarrior.com/exam/cka

kubectl create secret generic mysql-password —from-literal=mysql-root
password="your_strong_password"
2. Modify the Deployment:
- Update the 'mysql-deployment' Deployment's Pod template to mount the •mysql-password' Secret as
a volume.
- Use 'volumeMounts' to specify where the Secret should be mounted within the container, and
'volumes' to define the Secret as a volume source.
- Update the MySQL server's configuration (e.g., the ‘my.cnf file) to read the password from the
mounted volume.

3. Apply the Changes:
- Apply the modified Deployment YAML using 'kubectl apply -f mysql-deployment.yamP.
4. Restart the MySQL Pod:
- Restart the MySQL pod for it to read the password from the mounted volume. This can be achieved
using 'kubectl delete pod’.
5. Verify the Password:
- Connect to the MySQL database using the provided password and confirm it works correctly.

Question: 10

Visit us at: https://www.certswarrior.com/exam/cka

You have a Deployment named 'nginx-deployment• running an Nginx server. The Nginx configuration
file is stored in a ConfigMap named 'nginx-config'. You need to dynamically update the Nginx
configuration file without restarting the Nginx pods.

A. See the solution below with Step by Step Explanation.

Answer: A

Explanation:
Solution (Step by Step) :
1 . Create the ConfigMap (if not already existing):
- Define a ConfigMap named 'nginx-config' containing the Nginx configuration file. For example, create a
file 'nginx.conf with the desired configuration and then create the ConfigMap using 'kubectl create
configmap nginx-config --from-file=nginx.conf:
kubectl create configmap nginx-config --from-file=nginx.conf
2. Configure Nginx Deployment:
- Modify the 'nginx-deployment' Deployment to mount the 'nginx-config' ConfigMap as a volume.
- Use 'volumeMounts' to specify where the ConfigMap should be mounted (e.g., '/etc/nginx/conf.d/')
and 'volumes' to define the ConfigMap as a volume source.
- Update the Nginx container's configuration to use the mounted configuration file (e.g., 'nginx -g
daemon off;').

Visit us at: https://www.certswarrior.com/exam/cka

3. Update the ConfigMap:
- Modify the ‘nginx-config' ConfigMap with the new configuration content. This can be done using
‘kubectl patch' or 'kubectl edit':
kubectl patch configmap nginx-config -p '{"data": {"nginx.conf": "new_nginx_configuration"}}'
4. Observe Nginx Pods:
- Monitor the Nginx pods in the 'nginx-deployment' Deployment. Since the ConfigMap is mounted as a
volume, Nginx will automatically reload the configuration file without restarting the pod.
5. Verify the Update:
- Use 'kubectl logs' or 'kubectl exec' to examine the Nginx pod's logs and confirm that the new
configuration is being used.

Visit us at: https://www.certswarrior.com/exam/cka

http://www.certswarrior.com/ Questions and Answers (PDF)

Page | 1

 http://www.certswarrior.com/exam/M2180-651/

 For More Information – Visit link below:
 https://www.certswarrior.com
 16 USD Discount Coupon Code: U89DY2AQ

Visit us at: https://www.certswarrior.com/exam/cka

http://www.certswarrior.com/�
http://www.certswarrior.com/exam/M2180-651/�
https://www.certswarrior.com/�

